
CHAPTER 6

Lab Assignment 06—Programming using Python

Title: Programming using Python

Due: Before the start of your Lab 07 session

Aims: Use the Python programming language to write simple programs

6.1 Preparation

Before doing this lab, you should:

• Read the chapter in the online course reference manual on Python.

• Go through your lecture overheads on Python.

6.2 Introduction

Python is one of many programming languages that are commonly used. It is

similar to programming languages such as Java, C, C++, Visual Basic and other

languages used to write professional computer software. Although Python is a

reasonably new computer language, it has become very popular.

We will use Python to write some simple computer programs. Before we get

started, create a folder on your USB drive called Lab06. This is where we will

save all our Python programs for this lab.

87

COMPSCI 111/111G 6.3. GETTING STARTED

6.3 Getting started

Start the Python interpreter. This program can be found by clicking on the IDLE

icon - - pinned to the taskbar. You should see the Python Shell window as

follows:

You can type any Python command at the prompt and it will be executed imme-

diately. This is an excellent way to test out commands if you are not sure what

they do, or if you have the correct instruction. For example, enter the following

text at the prompt and hit
�� ��Enter

Python Source Code

1 print(”Hello World”)

You should see the following output:

We will write our Python programs using IDLE. Choose File → New File . You

will see a new blank window appear. This is where we will type in our Python

programs. Type the following text into the empty window:

Python Source Code

1 print(”Hello World”)

2 print(”How are you today?”)

Save the file as HelloWorld.py in your Lab06 folder. Run your program by

choosing Run → Run Module (alternatively, you could just press
�� ��F5 as a

short-cut).

The program you have written will be executed, one line at a time, and the results

will be displayed in the Python Shell window. You should see something like the

following:

88

COMPSCI 111/111G 6.4. USING VARIABLES

Note that the program is stored in a plain text file, and when we run the program,

the output is shown in the Python Shell.

6.4 Using variables

A variable is a name that we can use to refer to some information that we have

stored. We use the equals sign = to store information to a named variable. This

process is known as assigning a value to a variable. Start a new window and enter

the following program:
Python Source Code

1 #Author: Insert your name here

2 #Date: January 2020

3

4 #Define the value of our variables

5 pairs˙per˙crate = 15

6 number˙of˙crates = 17

7

8 #Calculate the results

9 total˙pairs = pairs˙per˙crate * number˙of˙crates

10

11

12 #Display the output

13 print(number˙of˙crates,”crates contain”, total˙pairs,

14 ”pairs of shoes.”)

Save the program as ShoeRetail.py. Run the program and examine the output.

Make sure you understand how the output is generated using the program.

A shoe company ships shoes to a supplier in New Zealand in crates of 15 pairs

of shoes. The supplier will send these shoes to its 11 shoe retailers around New

Zealand. Modify the above program to calculate how many pairs of shoes each

retailer receives (assuming they all receive the same number of shoes), and how

many pairs of shoes remain with the supplier.

You must use variables to store all values. You will need to use the // mathemat-

ical operator to calculate the number of pairs of shoes each retailer receives. You

89

COMPSCI 111/111G 6.5. READING INPUT FROM THE USER

will also need to use the % mathematical operator to calculate the number of pairs

of shoes that remain with the supplier. Your modified program should produce the

following output:

17 crates contain 255 pairs of shoes.
Each retailer receives 23 pairs of shoes.
2 pairs of shoes remain with the supplier.

Q1: Take screenshots of your program’s source code and output using

the snipping tool and paste them into your lab report. The screenshots

must be large enough for your code and output to be clearly legible. Make

sure that you have inserted your own name as the author in the first line

of the program.

6.5 Reading input from the user

Without asking the user for input, our programs are very limited. To read input

from the user, we use the instruction:

user˙input = input(”Enter the data: ”)

The input function reads user input as text. To convert this into a number we

need to use either the int function to convert to an integer, or the float function

to convert to a floating point number. For example to read input from the user

as an integer, we would use the instruction:

user˙int = int(input(”Enter the data: ”))

To read input from the user as a floating point number, we would use the instruc-

tion:

user˙float = float(input(”Enter the data: ”))

The following program is used to calculate the area and perimeter of a rectan-

gle. Read the program carefully and make sure that you understand what each

instruction does.
Python Source Code

1 #Author: Andrew Luxton-Reilly

2 #Date: January 2020

3

4 print(”This program calculates the area”)

5 print(”and perimeter of a rectangle”)

6 print()

7

8 width = int(input(”Please enter the width: ”))

9 height = int(input(”Please enter the height: ”))

10

11 area = width * height

90

COMPSCI 111/111G 6.5. READING INPUT FROM THE USER

12 perimeter = 2 * width + 2 * height

13

14 print(”The area is”, area)

15 print(”The perimeter is”, perimeter)

Write a new program called HeightConversion.py that converts a person’s

height in metres to a height in feet and inches. Your program must first ask

the user to enter their name. The program should then print a greeting to the

user followed by a prompt for the user to enter their height in metres. You can

assume that the user will always enter a floating point value (a number with a

fractional component like 1.78).

To find the equivalent height in feet and inches, your program should first convert

the height in metres to a height in inches. There are 39.37 inches in a metre.

Your program will then use this height in inches to calculate a height in feet and

inches. There are 12 inches in a foot. You will need to use the // and the %

operators, much like you did in the previous exercise to calculate this. Note, that

you will need to use the int() function to ensure that the number of feet and

inches are both integer values. Display the results as shown in the sample output

below:

Example 1:

Please enter your name: Damir
Hello Damir welcome to the height converter.
We will convert your height in metres
to a height in feet and inches.

Please enter your height in metres: 1.84

You are 1.84 metres
or 6 feet and 0 inches tall.

Example 2:

Please enter your name: Bart
Hello Bart welcome to the height converter.
We will convert your height in metres
to a height in feet and inches.

Please enter your height in metres: 1.68

You are 1.68 metres
or 5 feet and 6 inches tall.

91

COMPSCI 111/111G 6.6. USING A FUNCTION FROM A LIBRARY

Q2: Take screenshots of your program’s source code and output using

the snipping tool and paste them into your lab report. The screenshots

must be large enough for your code and output to be clearly legible. Make

sure that you have inserted your own name as the author in the first line

of the program.

6.6 Using a function from a library

Python comes with a number of library functions. We will be using a function that

generates a random number. The library is called random. Before we are able to

access any of the functions for a given library, we have to instruct Python that we

want to use that library. To do that, we use the import command as follows:

import random

Once the library is imported, we can use the functions that are stored in that

library. The function we are interested in is called randint(a,b). It is used to

generate a random integer value between the values of a and b (both inclusive).

We can use this function anywhere that Python is expecting a number. To use

this function in our program, we use the name of the library, then a dot, then the

name of the function from that library. For example, to get a random number

between 1 and 6 inclusive, we would use:

random.randint(1,6)

Random numbers are commonly used in video games. For example, random num-

bers can be used to calculate the damage inflicted when a video game character

attacks.

The damage an attack inflicts depends on the strength of the character (a num-

ber between 0–255 inclusive) and the strength of their weapon (a number be-

tween 0–127 inclusive). The damage inflicted will be a random number between:

character strength and (character strength+weapon strength). There-

fore if a character has a strength of 125 and a weapon of strength 100, then their

attack could inflict anywhere between 125–225 damage (inclusive).

Write a program named DamageGenerator.py that:

• Prints out the heading as in the screenshot on the next page.

• Prompts the user to enter the character’s name.

• Generates a random number between 0–255 (inclusive) to represent the

character’s strength.

• Generates a random number between 0–127 (inclusive) to represent their

weapon’s strength.

• Generates a random number between character strength and

character strength+weapon strength.

• Displays the information in the right format.

The following two examples show possible outputs when the program is run. Re-

member that your program needs to produce output in the exact same format as

92

COMPSCI 111/111G 6.7. CONDITIONS

these examples.

Damage Generator

Please enter the character’s name: Sauron
Sauron has a strength of 216
Sauron has a weapon with a strength of 107
Sauron attacks and inflicts 323 points of damage

Damage Generator

Please enter the character’s name: Aragorn
Aragorn has a strength of 182
Aragorn has a weapon with a strength of 113
Aragorn attacks and inflicts 198 points of damage

Q3: Take screenshots of your program’s source code and output using

the snipping tool and paste them into your lab report. The screenshots

must be large enough for your code and output to be clearly legible. Make

sure that you have inserted your own name as the author in the first line

of the program.

6.7 Conditions

With an if statement we can control whether a block of code gets executed. Have

a careful look at the code on the following page.

Three scenarios are being evaluated by this block of code. If both random marks

are greater than or equal to 50 the text “You have passed both assessments!”

will be printed. Else if only one of the random marks is greater than or equal

to 50 the text “You have passed one of the assessments!” will be printed. Else

both random marks must be less than 50 resulting in the text “You have failed

both assessments!” being printed.

93

COMPSCI 111/111G 6.7. CONDITIONS

Python Source Code

1 #Author: Damir Azhar

2 #Date: July 2019

3

4 import random

5

6 random˙mark1 = random.randint(0,100)

7 random˙mark2 = random.randint(0,100)

8 print(”Random mark 1: ”,random˙mark1)

9 print(”Random mark 2: ”,random˙mark2)

10 if random˙mark1 ¿= 50 and random˙mark2 ¿= 50:

11 print(”You have passed both assessments!”)

12 elif random˙mark1 ¿= 50 or random˙mark2 ¿= 50:

13 print(”You have passed one of the assessments!”)

14 else:

15 print(”You have failed both assessments!”)

We refer to random˙mark1 ¿= 50 as the condition. Conditions usually involve

the use of relational operators like less than (<), greater than (>), less than or

equal to (<=), greater than or equal to (>=), equal to (==) and not equal to

(! =). Two conditions can be joined together using an and or an or. If an and is

used, both conditions need to be true for the overall condition to be true. If an or

is used, at least one of the conditions needs to be true for the overall condition

to be true.

You should refer to your online course reference manual and lecture notes for a

more detailed discussion.

6.7.1 Damage Generator Revisited

We will now use if/elif/else statements to extend the DamageGenerator.py

program discussed in the previous section. Copy the code you

have in DamageGenerator.py and save it in a Python file called

DamageGeneratorUpdated.py. Update the code so that your program

now does the following:

• Prints out the heading.

• Prompts the user to enter the character’s name.

• Generates a random number between 0–255 (inclusive) to represent the

character’s strength.

• Generates a random number between 0–127 (inclusive) to represent their

weapon’s strength.

• Generates a random number between 1–100 (inclusive) to represent their

luck statistic.

• Generates a random number between character strength and

character strength + weapon strength to represent the damage

inflicted.

94

COMPSCI 111/111G 6.7. CONDITIONS

• If the character’s luck statistic is greater than 90, they have landed a critical

hit and receive a 10% damage bonus.

• Else if the character’s luck statistic is greater than 30, they have landed a

regular attack and there is no change to the damage inflicted.

• Else if the character’s luck statistic is greater than 10, they have landed a

sloppy attack and there is a 20% penalty to the damage inflicted.

• Else the character misses their attack and inflicts 0 damage.

• Displays the appropriate information in the right format, as in the examples

below.

The following four examples show possible outputs when the program is run. Re-

member that your program needs to produce output in the exact same format as

these examples.

Damage Generator

Please enter the character’s name: Aragorn
Aragorn has a strength of 63
Aragorn has a weapon with a strength of 98
Aragorn lands a critical hit and inflicts
158.4 points of damage

Damage Generator

Please enter the character’s name: Aragorn
Aragorn has a strength of 247
Aragorn has a weapon with a strength of 27
Aragorn attacks and inflicts 254 points of damage

Damage Generator

Please enter the character’s name: Aragorn
Aragorn has a strength of 178
Aragorn has a weapon with a strength of 2
Aragorn lands a sloppy attack and inflicts
144.0 points of damage

95

COMPSCI 111/111G 6.8. LOOPS

Damage Generator

Please enter the character’s name: Aragorn
Aragorn has a strength of 67
Aragorn has a weapon with a strength of 106
Aragorn has missed their attack
No damage is inflicted

Q4: Take screenshots of your program’s source code and output using

the snipping tool and paste them into your lab report. The screenshots

must be large enough for your code and output to be clearly legible. Make

sure that you have inserted your own name as the author in the first line

of the program.

6.8 Loops

A while loop can also be used to control the flow of execution. A detailed discussion

on while loops is provided in the lecture slides and online course reference manual.

Once you are familiar with how a while loop works carefully desk check the code

and answer the questions that follow. Do not type the code in to the computer.

Python Source Code

1 #Author: Damir Azhar

2 #Date: January 2020

3

4 prev = 1

5 curr = 3

6 count = 3

7 end = 5

8 print(prev)

9 print(curr)

10 while count ¡ end:

11 temp = curr

12 curr = curr + (curr - prev) ** 2

13 prev = temp

14 count = count + 1

15 print(curr)

16 print(”The End!”)

Q5: What is the output of the program?

96

COMPSCI 111/111G 6.9. GUESSING GAME

Q6: How many times is the body of the loop executed?

Q7: How many times is the condition count ¡ end checked?

Q8: What is the value of the variable count when the while loop finishes?

6.9 Guessing game

Using the pseudocode below, write a program called GuessingGame.py that plays

a simple guessing game. The program should:

• Generate a random number between 1 and 100. Assign this number to a

variable called “goal”.

• Set a variable called “guess” to 0.

• Print a message that describes the aim of the game (as shown in the example

below).

• Print a blank line.

• While guess is not correct (i.e. guess != goal), do the following steps:

– Ask the user to enter a guess and store the value in the “guess” variable.

– If the guess is greater than the goal, print the message “Too high, try

again.”

– If the guess is less than the goal, print the message “Too low, try

again.”

– If the guess is the same as the goal, print the message “Well done!”

• Print the message “See you later.”.

You will need to use a while loop and some if statements to complete this

program. An example of the game in action can be seen below:

The object of this game is to
guess a number between 1 and 100

Please guess the number: 50
Too low, try again.
Please guess the number: 75
Too low, try again.
Please guess the number: 87
Too high, try again.
Please guess the number: 80
Too low, try again.
Please guess the number: 83
Too low, try again.
Please guess the number: 85
Well done!
See you later.

97

COMPSCI 111/111G 6.10. TURTLE GRAPHICS

Q9: Take screenshots of your GuessingGame.py source code and output

using the snipping tool and paste them into your report. The screenshot

must be large enough for your code to be clearly legible. Make sure that

your code includes a comment specifying your name.

6.10 Turtle Graphics

Using the material presented on Turtle Graphics in your lecture overheads and

the online course reference manual have a look at the following Python code as

well as the output it produces. Type the following program and save it to a file

DiamondSpiral.py. Run the program. Make sure that you understand what each

instruction does.

Python Source Code

1 #Author: Damir Azhar

2 #Date: January 2020

3

4 import turtle

5

6 step = 200

7 decrement = 4

8 angle1 = 60

9 angle2 = 120

10 count = 0

11

12 turtle.left(angle1)

13 while step ¿ 0:

14 turtle.forward(step)

15 step = step - decrement

16 if count % 2 == 0:

17 turtle.right(angle2)

18 else:

19 turtle.right(angle1)

20 count = count + 1

98

COMPSCI 111/111G 6.11. LAB SUMMARY

Q10: Take screenshots of the program’s source code and output and

paste them in your lab report. The screenshots must be large enough for

your code and output to be clearly legible.

Now write a Python program called House.py where you use the turtle to draw a

house as shown below.

Q11: Take screenshots of your program’s source code and output using

the snipping tool and paste them into your lab report. The screenshots

must be large enough for your code and output to be clearly legible. Make

sure that you have inserted your own name as the author in the first line

of the program.

6.11 Lab Summary

Q12: Write a brief (paragraph) description of what you did in this lab.

You have now completed the compulsory part of this lab. The remaining sections

are completely optional. No marks are allocated to the programs contained in

99

COMPSCI 111/111G 6.12. OPTIONAL PROGRAMS

these sections. However, they are good practice and will help you to understand

the Python programming language better, so it is recommended that you give

some of them a try.

6.12 Optional programs

Leap years (challenging)

Due to the fact that it actually takes about 365 14 days for the earth to circle the

sun, every fourth year has an extra day added to the end of February and the year

is called a leap year. Leap years have 366 days, non leap years have 365 days.

Unfortunately, this correction is not quite perfect, and so once every century (at

the turn of the century) we do not have the normal leap year. However, even that

isn’t quite accurate enough, so on every 4th century, we do have the leap year (so

3 out of every 4 centuries we don’t have the leap year, but on the 4th century we

do).

The following paragraph describes how to determine if a given year is a leap year:

Every year that is evenly divisible by 4 is a leap year, except that a year

which is also divisible by 100 is not a leap year, unless it is divisible by

400, in which case it is a leap year after all!

Examples:

• 1900 was not a leap year, because it is divisible by 100, but not by 400

• 1904 was a leap year, because it is divisible by 4, but not by 100

• . . .
• 1996 was a leap year, because it is divisible by 4, but not by 100

• 2000 was a leap year because it is divisible by 400

• 2004 was a leap year because it is divisible by 4, but not by 100

• 2005 was not a leap year because it is not divisible by 4

Write a program that asks the user to enter a year. The program should decide

if the year is a leap year or not and print out the decision to the user (i.e. display

either “That is a leap year”, or “That is not a leap year”).

You will need to use if statements and the remainder operator % to write this

program.

Prime numbers (challenging)

A prime number is any number greater than 1 that is only evenly divisible by itself

and 1. In other words, if the number can be divided by any positive number apart

from itself and 1 and leave no remainder after the division, then it is not a prime

number.

100

COMPSCI 111/111G 6.12. OPTIONAL PROGRAMS

Write a program that asks the user to enter a number. The program should decide

whether the number is a prime number or not and inform the user.

You will need to use a while loop, if statements and the remainder operator %

to write this program.

The Rock Paper Scissors Game (challenging)

Rock Paper Scissors is a hand game that can be played by two or more people,

where the three items in question are represented with hand gestures. The objec-

tive of the game is to select a hand gesture which defeats that of the opponent.

The rules that govern this are as follows:

• Rock beats scissors.

• Scissors beats paper.

• Paper beats rock.

Based on the above rules and using the following pseudocode, write a program

called RockPaperScissors.py that plays a simple game of Rock Paper Scissors

against the computer.

• Print the title ”The Rock Paper Scissors Game”.

• Set the variable rock to be 1, the variable paper to be 2 and the variable

scissors to be 3.

• Set the user’s input to be 0.

• While the user has not entered -1:

– Ask to user to enter 1 to choose rock, 2 to choose paper, 3 to choose

scissors or -1 to quit the game.

– Randomly assign rock, paper or scissors as the computer’s choice by

generating a random number between 1 and 3 and assigning it to a

variable named computer˙choice.

– If the user has not entered -1:

∗ If the user has chosen rock:

· Print ”You chose rock”

∗ If the user has chosen paper:

· Print ”You chose paper”

∗ If the user has chosen scissors:

· Print ”You chose scissors”

∗ Repeat the previous 3 steps for the computer printing ”The com-

puter chose” followed by the computer selection.

∗ If the user wins:

· Print ”Congratulations you win!”

∗ If the computer wins:

· Print ”Sorry you lose!”

∗ If the user and the computer make the same selection:

· Print ”The match was a tie!”

• Print ”Goodbye”

An example of the program running is shown on the next page:

101

COMPSCI 111/111G 6.13. WHAT TO HAND IN

The Rock Paper Scissors Game
Please enter 1 for rock, 2 for paper,
3 for scissors or -1 to quit: 1
You chose rock
The computer chose scissors
Congratulations you win!

Please enter 1 for rock, 2 for paper,
3 for scissors or -1 to quit: 3
You chose scissors
The computer chose scissors
The match was a tie!

Please enter 1 for rock, 2 for paper,
3 for scissors or -1 to quit: -1
Goodbye

You will need to use a while loop and some if statements to complete this

program.

6.13 What to Hand In

This lab is worth 10% of the marks for the practical component of the COMPSCI

111/111G course. You must hand in:

• A signed CompSci111 cover sheet/attendance sheet.

• The answers to all the questions asked in this lab (typed with correct spelling

and grammar).

• All printouts required for this lab.

Your lab report should be stapled together and the entire report should be handed

in to the appropriate box no later than 5 minutes before the beginning of your next

lab session.

102

